SEPARATION OF CARTESIAN PRODUCTS OF GRAPHS INTO SEVERAL CONNECTED COMPONENTS BY THE REMOVAL OF EDGES
Let G = (V(G), E(G)) be a graph. A set S ⊆ E(G) is an edge k-cut in G if the graph G − S = (V(G), E(G) \ S) has at least k connected components. The generalized k-edge connectivity of a graph G, ...
Researchers have proved a special case of the Erdős-Hajnal conjecture, which shows what happens in graphs that exclude anything resembling a pentagon. When you walk into a room full of people, you can ...
Anti-Ramsey theory in graphs is a branch of combinatorial mathematics that examines the conditions under which a graph, when its edges are coloured, must necessarily contain a ‘rainbow’ subgraph – a ...
Jacob Holm was flipping through proofs from an October 2019 research paper he and colleague Eva Rotenberg—an associate professor in the department of applied mathematics and computer science at the ...
Graph theory isn’t enough. The mathematical language for talking about connections, which usually depends on networks — vertices (dots) and edges (lines connecting them) — has been an invaluable way ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results